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c(t) ' Ac cos (2Bfct % 2), (5-1)(5-1)

Chapter 5
ANALOG MODULATIONANALOG MODULATION

When assessing a communications link for its susceptibility to jamming, among the

attributes which must be considered is the type of signal modulation.  Modulation

schemes are divided into two major classifications: analog and digital.  An analog

signal is one which can take on an infinite number of values (consider a sinusoid

signal) while a digital signal can have only a discrete number (for example a square

wave only takes on two values).  These two classes are further subdivided into

several different methods.  Each method has characteristics which are unique and

others which it shares with the other methods.  It is these characteristics which must

be understood and exploited in order to achieve success in denying or degrading the

link signal at the receiving site(s) with proper jammer waveforms.  In this chapter

the signal structures of the different methods of analog modulation will be

investigated.  In Chapter 6 we will analyze signals with digital modulation.

 Modulation is a process which modifies over time a carrier signal in some

specific manner.  A carrier signal c(t) is a sinusoid at a specified, constant frequency

fc.  Its amplitude Ac is likewise constant and known, so that a suitable mathematical

model to represent the carrier signal is (see Section 2.3)

where 2 may or may not be known but is constant.  Since the carrier signal is

normally taken as the reference, 2 is usually taken to be zero.  No matter how the

carrier signal is modified, the result must conform to the sinusoidal general form

(given in Section 2.4).  A modulated signal s(t) must therefore follow the model



5-2

s(t) ' A(t) cos (2Bfct % 2(t)). (5-2)(5-2)

We see that for time modifications of this signal to occur they are constrained to

variations in the amplitude A(t) and/or in the phase 2(t).  Comparing the modulated

signal of Equation 5-2 with the carrier signal of 5-1, it is seen that any changes to the

carrier are impressed on the amplitude and/or the angle of the original signal c(t).

These observations reveal an important distinction in modulation types, that

variations impressed upon the carrier are either in amplitude, in angle, or in both.

While amplitude and angle modulations are used in both analog and digital

modulations, the only modulation which uses both simultaneously (called quadrature

amplitude modulation) will be covered in Chapter 6.

Before embarking on a discussion of the different modulation types, we should

consider why modulation of a carrier by a message signal is required at all.  When

a message signal is generated–be it voice, music, data, etc.–it is generated at

baseband. (For a discussion of baseband see Section 3.7.1.)  Baseband signals can be

thought of as low-pass signals, they dwell at the frequencies where they are

generated.  After creating a baseband message signal, ostensibly for communication

with others at some distant location(s), what do we do with it?  We probably cannot

send this baseband to them directly (unless we are using directed propagation

channels such as transmission lines or fiber optic cables).  Instead, the message signal

must be sent to them via a radio wave at a specified frequency or frequency band.

For example, if the communications circuit is via High Frequency (HF), the signal

will be sent within the frequency range of 3 - 30 MHz.  Similarly, a VHF signal is in

the range from 30 - 300 MHz, etc.  In order to have the message signal travel within

the constraints of the channel of the circuit (i.e., within the proper frequency band),

we must somehow modulate a carrier frequency to carry the message.

A carrier frequency is a signal of a single frequency which falls within the

frequency band of the channel through which we wish to communicate.  There is no

information or message on this signal, just a single frequency.  In order to carry the

message, the carrier must be modulated by the message signal, m(t).  
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sAM(t) ' c(t) % c(t)kam(t) (5-3)(5-3)

sAM(t) ' Ac [1 % kam(t)] cos (2Bfct). (5-4)(5-4)

At the receiver the message signal must be recovered from the modulated

signal through demodulation.  In this chapter we will introduce some ideal

demodulators with which to extract m(t); while in Chapter xxx we will examine

practical demodulators in order to evaluate their vulnerability to jamming.  We begin

this analog modulation study with amplitude modulation.

5.1 AMPLITUDE MODULATION

In amplitude modulation, the amplitude of the carrier signal is modified so that when

it leaves the transmitter it will no longer have the constant amplitude term Ac given

in Equation 5-1 as the sole determining factor of its amplitude.  It will instead have

an amplitude term which varies according to m(t).  Since the modulated carrier will

now contain the message signal, we will call this new signal s(t).  There are several

ways to modulate the amplitude of the carrier which we will now discuss.  We begin

with standard broadcast AM.

5.1.1 Amplitude Modulation with Carrier (AM)

5.1.1.1 Modulation

Let's define a modulated AM signal s(t) to be

where c(t) is the carrier signal defined in Equation 5-1.  This modulated signal is

seen to be the carrier added to the product of the carrier, the message signal m(t),

and a constant ka.  This AM signal allows for ease of demodulation (as will be shown

in Section 5.1.1.2) but notice the inefficiency of the power usage since the

unmodulated carrier is contained in s(t) along with the term containing m(t).

Observe that the message signal is modified by a sensitivity constant ka which

controls the maximum amplitude of the message signal with respect to the carrier

amplitude.  By combining terms we can see that
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a(t) ' Ac (1 % kam(t)). (5-5)(5-5)

ka m(t)max # 1. (5-6)(5-6)
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Figure 5-1.  AM signal with ka Am = 0.9.

Knowing that the original amplitude of the carrier was Ac, we can readily see

that the amplitude (or envelope) of the modulated signal s(t) is

We never want the quantity kam(t) to be larger than unity, i.e.,

If m(t) is a sinusoid (which for most message signals it will be a combination of

sinusoids), then it will take on peak values of ± Am, the maximum value of m(t).  For

illustration, an AM signal where c(t) = cos(2B(10)t), m(t) = cos(2Bt), and ka = 0.9

is shown in Figure 5-1 below.  The envelope tracing out a(t) is shown by the two

solid lines.  Notice that the envelope is representative of m(t).

If the restriction of Equation 5-6 is not followed and kam(t)max > 1, the value

within the parentheses of Equation 5-5 will become negative (on the negative
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µ ' ka m(t)max # 1. (5-7)(5-7)
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Figure 5-2.  AM signal with ka m(t)max = 1.2.

alternation of m(t)).  If this quantity is allowed to go negative, then a(t) will become

negative; but a(t) is defined as the amplitude of s(t).  A negative amplitude is not a

defined quantity, as amplitudes are always positive.  The result of a negative

amplitude will be to cause amplitude distortion as shown in the figure below, where

c(t) and m(t) are the same as above, but ka has been increased to 1.2.  This signal is

considered to have amplitude distortion because the envelope is no longer a faithful

representation of m(t).

From these two examples we see that to prevent amplitude distortion and

maintain the envelope as a faithful representation of m(t) we must adhere to the

requirement of Equation 5.6.  This quantity ka·m(t)max is such a fundamental

descriptor of the expected waveform that it is given its own name, modulation index,

and symbol µ, so that

Since µ # 1, its value multiplied by one hundred yields the percentage modulation,
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% modulation ' ka m(t)max (100) ' 100µ. (5-8)(5-8)

m(t) ' Am cos (2Bfmt) (5-9)(5-9)

µ ' ka Am. (5-10)(5-10)

sAM(t) ' Ac [1 % µ cos(2Bfmt)] cos (2Bfct). (5-11)(5-11)

sAM(t) ' Ac cos(2Bfct) % µ cos(2Bfmt) Ac cos(2Bfct)

' Ac cos(2Bfct) %
Acµ

2
cos[2B(fc & fm)t] % cos[2B(fc % fm)t] .

(5-12)(5-12)

Ac cos (2Bfct) º
Ac

2
[*(f & fc) % *(f % fc)]. (5-13)(5-13)

so that a µ value of unity signifies 100% modulation.

Analysis of the AM equation of Equation 5-4 is facilitated by restricting m(t)

to a single-frequency, single-amplitude signal.  If the message signal is a sinusoid at

frequency fm with amplitude Am, we will have

and

This allows us to write the AM signal modulated by a signal of a single frequency as

Multiplying this out we get

This AM signal is seen to consist of the original carrier signal plus a signal at fc – fm

and another at fc + fm .  The interpretation of this is that the original message signal

(at frequency fm) has been frequency shifted to two locations, one above the carrier

and one below.  These two signals each contain the information of the signal and are

called sidebands.  There are two sidebands with standard AM modulation, but the

same information is contained in each.  The amplitudes of these two additional

signals are half the original carrier amplitude multiplied by the modulation index µ.

To help clarify the outcome of Equation 5-12 we can find its Fourier

transform.  The Fourier transform will establish the spectral or frequency content of

the signal.  The F.T. of the first term is simple, from Equation 3-11 it is
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Ac µ

2
cos (2Bf1t) º

Ac µ

4
[*(f & f1) % *(f % f1)]

'
Ac µ

4
[*(f & fc % fm) % *(f % fc & fm)]

(5-14)(5-14)

Ac µ

2
cos (2Bf2t) º

Ac µ

4
[*(f & f2) % *(f % f2)]

'
Ac µ

4
[*(f & fc & fm) % *(f % fc % fm)].

(5-15)(5-15)

S(f) '
Ac

2
[*(f & fc) % *(f % fc)]

%
Acµ

4
*[f & (fc & fm)] % *[f % (fc & fm)]

%
Acµ

4
*[f & (fc % fm)] % *[f % (fc % fm)]

(5-16)(5-16)

The F.T. of the two right-side terms can be found similarly by letting f1 = fc – fm and

f2 = fc + fm and again using Equation 3-11 to find

and

Combining Equations 5-13 – 5-15 the F.T. of Equation 5-12 is found as

which represents the carrier and the lower and upper sidebands.  

Recall from Chapters 2 and 3 that a shifted delta function, e.g., *(f – fc), is just

a delta function positioned at fc.  Therefore, Equation 5-16 is interpreted as, starting

with the top line, delta functions at ±fc, and from the middle line, delta functions at

fc – fm and –fc + fm, and from the bottom line, delta functions at  fc + fm and –fc – fm.

The carrier delta functions have a magnitude of Ac/2 and each of the sidebands has

a magnitude of Ac µ/4.  The frequency domain representation of this AM signal is

shown in Figure 5-3 where we have set Ac = 2, Am = 1, and µ = 0.8.  (Frequency

domain representation of m(t) included for comparison.)
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Ackam(t)cos(2Bfct) º
Acka

2
M(f & fc) % M(f % fc) . (5-17)(5-17)
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Figure 5-3.  AM signal with Ac = 2, Am  = 1, and µ = 0.8

Notice that the bandwidth of the modulating signal is fm, but the bandwidth

of the modulated signal is twice that or 2fm because of the two sidebands around the

carrier.

Using single-frequency modulating signals provides useful insight into the

functioning of the AM signal, but usually a real-world modulating signal consists of

many different frequencies.  For analysis of a multi-frequency signal assume the

frequency domain representation of the modulating signal is as represented in Figure

5-4.  As seen in the figure M(f) is a baseband multi-frequency signal, extending from

0 Hz to fmax.  Its bandwidth is therefore fmax.

To determine how the AM signal will appear in the frequency domain using

this modulating signal, begin with Equation 5-2 and find its Fourier transform.  The

transform of the carrier is given by Equation 5-13.  For the remainder of the

equation, Ackam(t) cos(2Bfct), the transform can be found using Equation 3-21 to be

The F.T. is then the sum of Equations 5-13 and 5-17 as shown in Figure 5-5, where
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Figure 5-5.  Frequency domain AM signal with modulating signal given in
Figure 5-4, Ac = 2, and µ = 0.5.
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Figure 5-4.  Frequency domain representation of multi-frequency m(t).
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. (5-18)(5-18)

Ac = 2 and µ = 0.5.  Notice that the modulating signal has been shifted to ±fc and

that the bandwidth has doubled from fmax to 2fmax.

Standard AM is characterized by this bandwidth doubling and that the carrier

is transmitted along with the sidebands.  Power transmitted in the carrier contains

no information but allows for ease of demodulation.  We will examine demodulation

in Section 5.1.1.3 but first we will discuss the distribution of power in the AM signal.

5.1.1.2 Average Power in AM Signal

The average power of an AM signal can be found by integrating the square of the

signal over one period and dividing by the length of the period, see Equation 2-29.

Furthermore, the average power of any sinusoid of amplitude A, regardless of

frequency, is A2/2, as was shown in Equation 2-31.  By inspection (i.e., without

integrating), we see that the average power of Equation 5-12 is 

Therefore the power in the carrier is seen to be Ac
2/2 and that in the sidebands is

Ac
2µ2/4. 

The power being equally divided between the sidebands, each sideband then

has a power content of (Ac µ)2/8.  If µ = 1, that is 100% modulation, the maximum

power of the sidebands (i.e., where the information is) is only 1/3 of the total power

of s(t).  This is very inefficient communication.

5.1.1.3 Demodulation

When the incoming signal is collected at the receiver, the message information is not

readily available from s(t).  Just as the carrier was modulated with m(t) to get s(t),

we must demodulate s(t) at the receiver to recover m(t).  Demodulation is the

process of isolating m(t) from all other time-varying signals.  Isolating m(t) with the

inclusion of multiplication by a constant is acceptable and usually the case.

Demodulation is also called detection, which is a holdover from earlier days

with the crystal radio, where the crystal was a detector (diode) which performed the
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s 2
AM(t) ' A 2

c [1 % kam(t)]2 cos2 (2Bfct)

' A 2
c [1 % 2kam(t) % k 2

a m 2(t)] 1

2
%

1

2
cos(4Bfct) .

(5-19)(5-19)

s(t)demod '
A 2

c

2
[2kam(t) % k 2

a m 2(t)]. (5-20)(5-20)

demodulation.  Two demodulator types are used prevalently for AM:  the sometimes-

used square law detector, and the envelope detector, which is used in nearly all AM

receivers.

The square-law detector operates by taking the AM signal as input, squaring

it, and passing the result to a low-pass filter.  To see how it works, first square

Equation 5-4 to get

After low-pass filtering, the term containing fc will be eliminated leaving a DC term

(which is easily removed) and the demodulated signal

Notice that both m(t) and m2(t) outputs from the demodulator.  The m(t) term has

therefore not been completely isolated from all other time-varying signal.  The m2(t)

term represents distortion and can only be tolerated if ka « 1 so that its contribution

is negligible compared with that of m(t).  With ka « 1, the modulation index must be

kept very low at the transmitter which reveals why this type demodulation is not

often used.

The envelope detector is a simple circuit of a diode followed by a RC low-pass

filter circuit, as shown in Figure 5-6 below.  The operation of the circuit is simple.

The diode only allows the positive half of sAM(t) to enter the filter.  The positive

voltage of s(t) rapidly charges the capacitor to its instantaneous value.  As the wave

goes negative the diode blocks the capacitor from discharging through the source and

the capacitor must discharge slowly through the load resistor, maintaining the output

voltage near its previous level.  This continues until the next charging cycle from the

input which will either increase the voltage on the capacitor or it will continue

discharging.

Both these demodulation methods are known as non-coherent (as well as

being non-linear).  We will discuss coherent demodulation in Section 5.1.2.2.
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sAM(t) ' c(t) % ka m(t) c(t) ' c(t) % sm(t), (5-21)(5-21)

sDSB(t) ' m(t) c(t) ' Ac m(t) cos(2Bfct). (5-22)(5-22)

SDSB(f) '
Ac

2
[M(f & fc) % M(f % fc)]. (5-23)(5-23)

Figure 5-6.  Envelope detector.

5.1.2 Double-Sideband Suppressed-Carrier Modulation

5.1.2.1 Modulation

In the last section we saw that the AM signal was defined as

where we define sm(t) to be the portion of the signal containing modulation.  We also

saw that the power in the sidebands (the information) was only a portion of the

power transmitted in sAM(t).  Specifically we can see that c(t) in the equation above

consists of just the carrier.  If we could somehow eliminate, or suppress, c(t) from

sAM(t) and leave just sm(t), we could transmit the same information with much less

power in the signal s(t).

This is exactly the idea behind double-sideband suppressed-carrier (DSBSC

or just DSB) modulation.  By suppressing the carrier we can see from the equation

above that the DSB waveform will be of the form

The frequency domain DSB representation can be established by finding the

Fourier transform of s(t).  Using Equation 3-21 the F.T. is readily seen to be
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sDSB(t) ' AcAm cos(2Bfmt) cos(2Bfct)

'
AcAm

2
cos 2B(fc & fm)t % cos 2B(fc % fm)t .

(5-24)(5-24)
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Figure 5-7.  DSB signal with m(t) superimposed on top.

If m(t) is a sinusoid of a single frequency, e.g., Am cos(2Bfmt), then the

modulated DSB signal will be

Notice that the two sidebands are still evident, just as with AM, but the isolated

carrier signal is no longer present.

For c(t) = cos(2B(10)t) and m(t) = cos(2Bt) (the same values given in the

AM example in Figure 5-1), the DSB signal is as shown in Figure 5-7.  The signal

sDSB(t) is shown as the high frequency signal while m(t) is superimposed on top.

Notice that the envelope of s(t) is no longer tracing m(t) as it did in standard AM,

for example as in Figure 5-1.  This indicates that the ubiquitous envelope detector

used in AM will not demodulate DSB.
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c(t) ' cos(2Bfct), (5-26)(5-26)

cs(t) ' cos(2Bfct % N). (5-27)(5-27)

S(f) '
AcAm

4
[*(f & (fc & fm)) % *(f % (fc & fm))

% *(f & (fc % fm)) % *(f % (fc % fm))]

(5-25)(5-25)

The frequency-domain representation for the signal of Figure 5-7 can be found

using Equation 5-23 or 5-24 to be

Note that the frequency content of this signal is identical to that found for AM in

Equation 5-16 and pictured in Figure 5-3 except that there is no carrier signal.  There

is still double sideband just as in AM so that the bandwidth required by the system

is twice that of the message signal.

5.1.2.2 Demodulation

How do we demodulate this DSB signal?  If we examine sDSB(t) we can see that

squaring it yields m2(t)c2(t); we cannot recover m(t) from this signal.  What about

envelope detection?  Again examining sDSB(t) in Figure 5.7 we can see that the

envelope of sDSB(t) is not the envelope of m(t).  So this method will not work either.

We need a new method to demodulate this signal.

Upon comparing the differences between DSB and AM, we find that DSB does

not contain the carrier signal.  It would seem that reinserting the suppressed carrier

back into the DSB signal might facilitate demodulation.  In order to insert the carrier

back into the signal sDSB(t) we need to know and be able to synthesize the carrier

frequency exactly.  We will begin by allowing a constant phase difference between

the original carrier c(t) and the synthesized carrier cs(t).  Recall that the original is

and we require the synthesized to be identical except for a possible phase offset,

Let's multiply the signal sDSB(t) by this synthesized carrier in a product

modulator and call the output v(t).  We will get
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v(t) ' sDSB(t)cs(t) ' Ac m(t) cos(2Bfct) cos(2Bfct % N)

'
Ac m(t)

2
[cos(N) % cos(4Bfct % N)].

(5-28)(5-28)

vo(t) '
Ac

2
cos(N) m(t), (5-29)(5-29)

After low-pass filtering v(t) the output vo(t) will then be

which is the original message signal multiplied by a constant ½AccosN.  

This process of multiplying the incoming signal by a replica of the carrier

frequency then low-pass filtering the output is called coherent or synchronous

detection.  The envelope detector discussed above is an example of a noncoherent

detector.

There are two problems with the output represented by Equation 5-29 and

they both have to do with N.  First, what if N is not constant but is a function of t,

i.e., N = N(t)?  (As you would have from a moving transmitter such as in an aircraft,

see Chapter xxx).  In this non-constant N case there would be an independent time-

varying signal cos N(t) multiplied by m(t).  This will prevent isolating m(t) without

distortion.  

Second, what if N = B/2?  Now cos N = 0 and the product of Equation 5-29

leaves no message to detect.  This situation is called the quadrature null effect.  

The way to correct both these situations which prevent demodulation of m(t)

is to force N to zero.  We will then have cs(t) identical to c(t) in frequency and phase.

We do this with the Costas loop.

The Costas loop operates by first generating synthesized cosine and sine

waves at the carrier frequency at some arbitrary phase N with respect to c(t).  These

two signals are then used as the cs(t) frequencies to two coherent detectors identical

to that above.  The outputs from these detectors are ½AccosNm(t) and ½AcsinNm(t).

The cosNm(t) term is taken as the output as before while both are input to a phase

discriminator.  There they are multiplied together then low-pass filtered to get a
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signal proportional to N in magnitude and polarity.  This is feedback to the cs(t)

synthesizing oscillator which adjusts its output, forcing N to zero.

5.1.3 Single-Sideband Modulation

We saw in both AM and DSB that the information signal m(t) was translated to the

carrier frequency fc.  We observed that the signal bandwidth was doubled from that

of the original bandwidth of m(t).  This doubling was due to the positive frequencies

of the baseband signal m(t) translating to above fc while the negative frequencies of

the baseband were translated to below fc.  All the information of m(t) is contained

in the positive frequencies of the baseband (or alternatively in the negative

frequencies), so that doubling the bandwidth is not necessary for information

transfer.  Doubling the bandwidth did, however, allow ease of generation and/or

demodulation of the transmitted signal, s(t).

If we are willing to pay the price of complex modulation/demodulation of the

signal, we can transmit just one sideband (i.e., single sideband, SSB) with no loss of

information.  In this way we can transmit less power and have a more efficient

system, or boost the power and get further range, better SNR, etc.

5.1.3.1 Modulation

Just as we started analysis of DSB by comparing it to AM, we will begin our

discussion of SSB by starting with DSB.  Let's begin with the spectrum of the message

signal, m(t).  We might have a frequency domain representation something like

Figure 5-4.  Notice that the maximum value of this illustrated signal occurs at f = 0.

The value here is M(f) evaluated at 0, or M(0).  If we now multiply m(t) by the

carrier, c(t) = Ac cos(2Bfct), we translate M(f) (both positive and negative

frequencies) out to ±fc at a center amplitude of ½AcM(0) as can be seen in Figure 5-

5, which we know to represent DSB.  If we now send the DSB signal through a filter

whose bandwidth only allows the frequencies corresponding to the positive baseband

signal through, we will have only the upper sideband as pictured in Figure 5-8.

Similarly, if we only allow the lower sideband to pass, we will generate a signal

similar to 5-9.
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While filtering the unwanted sideband (called frequency discrimination) is one
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Figure 5-8.  Single sideband signal consisting of only upper sideband.
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Figure 5-9.  Single sideband signal consisting of only lower sideband.

method used to generate SSB, some precautions are mandated.  Because real filters

are not ideal, the lower sideband cannot simply be sliced from the upper sideband.
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sUSB(t) '
Ac

2
[m(t)cos(2Bfct) & m̂(t)sin(2Bfct)], (5-30)(5-30)

sLSB(t) '
Ac

2
[m(t)cos(2Bfct) % m̂(t)sin(2Bfct)]. (5-31)(5-31)

sUSB(t) '
AmAc

2
[cos(2Bfmt)cos(2Bfct) & sin(2Bfmt)sin(2Bfct)]

'
AmAc

2
cos[2B(fc % fm)t],

(5-32)(5-32)

 Therefore, there must be some space between the positive and negative frequencies

of the baseband m(t).  This is usually the case for audio signals where the

frequencies are not significant until around 300 Hz.  For data signals however, the

baseband might continue down to DC.

Another potential problem is that if the SSB signal is to be broadcast at radio

frequency (RF), filtering the unwanted sideband at the RF may not be possible.  In

this case, a multi-stage translation may be required where the initial translation and

filtering occur at a lower frequency followed by a translation to the RF and final

filtering.

With the frequency domain of a SSB signal now established, we need the time

domain representation of the signal.  The mathematics to derive a time-domain

single sideband signal are fairly lengthy, so will not be presented here.  The

interested reader should consult Appendix xxx.  The result there is that an upper

sideband signal can be represented by

where is the quadrature of m(t), called the Hilbert transform of m(t).  Equationm̂(t)

5-30 can be seen to be the original DSB signal minus its Hilbert transform.  In a

similar manner the lower sideband can be found as

As verification that these two waveforms are indeed valid SSB

representations, again let m(t) = Am cos(2Bfmt).  Then  = Am sin(2Bfmt).m̂(t)

Substituting into Equation 5-30 we have

where we have used Equation Axxx in the last step.  Observe that this signal contains

only the upper sideband; the fc – fm term has been eliminated.  Similarly, a check of

Equation 5-31 with these substitutions shows only the lower sideband present.
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v(t) ' sSSB(t) cs(t) '
Ac

2
[m(t)cos(2Bfct) ± m̂sin(2Bfct)]cos(2Bfct)

'
Ac

4
m(t) % RF terms.

(5-33)(5-33)

vo(t) '
Ac

4
[m(t) cosN % m̂(t) sinN], (5-34)(5-34)

The method used for creating single sideband signals directly as indicated

here, i.e., without filtering, is called phase discrimination rather than frequency

discrimination.  Examination of Equations 5-30 and 5-31 show that they are

comprised of the original double sideband signal with its quadrature either added or

subtracted.  This results in phase cancellation, hence the name.

5.1.3.2 Demodulation

Since the SSB signal consists of a DSB term added to another term, we can use the

same demodulation method that we used for DSB, i.e., coherent detection.  With

coherent detection we first multiply s(t) by the synthesized carrier, cs(t) to get v(t).

This output is then passed through a low pass filter to get vo(t).  Using this same

method we used for DSB we get

The output of the demodulator is therefore vo(t) = ¼ Acm(t).

With the presence of the quadrature component, SSB is not tolerant of a phase

difference between c(t) and cs(t).  If a phase difference N exists, then the output from

the demodulator will be

so that some method of keeping N small, e.g., a costas loop, will have to be used with

SSB just as with DSB.
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sPM(t) ' Ac cos[2c(t) % kpm(t)] ' Ac cos[2Bfct % kpm(t)]. (5-35)(5-35)

s(t) ' A cos(2Bfit) ' A cos(2(t)). (5-36)(5-36)

d 2(t)
dt

' 2Bf i Y fi '
1

2B
d 2(t)

dt
. (5-37)(5-37)

fi ' fc % kf m(t) '
1

2B
d 2(t)

dt
. (5-38)(5-38)

5.25.2 ANGLE MODULATIONANGLE MODULATION

In amplitude modulation, we saw that we could impose the message signal upon the

carrier signal by varying its amplitude.  The phase and frequency of the carrier were

left unchanged.  In angle modulation the amplitude of the carrier is left unchanged

but either the phase or frequency of the carrier is varied in a manner proportional to

the message signal.

If we start with a carrier signal Ac cos(2Bfct), the phase of the carrier

waveform is 2(t) = 2c(t) = 2Bfct.  If we now modify 2(t) linearly with a message

signal, i.e., 2(t) = 2c(t) + kpm(t) where kp is the phase sensitivity (in radians per

volt, radians per ampere, etc.) we will have a phase modulated waveform.  A phase

modulated waveform will therefore be

A frequency modulated waveform takes a little different form.  If we look at

a modulated waveform at some time-varying instantaneous frequency fi, we could

characterize it as 

If the phase of this signal were known but not the frequency, we could determine the

frequency by differentiating the phase to get

If we now require that the instantaneous frequency depend not only on just fc, but

also on the modulating signal, we get fi = fc + kfm(t).  The constant kf is the

frequency sensitivity in hertz per volt (or hertz per ampere).  Substituting for fi in

Equation 5-37 
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2(t) ' 2Bm
t

0
fidt ' 2Bm

t

0
[fc % kf m(t)]dt ' 2Bfct % 2Bkf m

t

0
m(t)dt. (5-39)(5-39)

sFM(t) ' Accos 2Bfct % 2Bkf m
t

0
m(t)dt . (5-40)(5-40)

fi ' fc % kfm(t) (5-41)(5-41)

sFM(t) ' Accos (2Bfct % 2Bkf m
t

0
m(t)dt). (5-42)(5-42)

m(t) ' Amcos(2Bfmt). (5-43)(5-43)

To find 2(t) we simply integrate the quantity 2Bfi,

A frequency modulated waveform is therefore

Comparing Equations 5-35 and 5-40 we see that they are of the same general

form and that the frequency modulated waveform is simply a phase modulated

waveform with the integral of m(t) modifying the phase rather than m(t) modifying

it as in Equation 5-35.  Similarly, a phase modulated waveform is just a frequency

modulated waveform with the differentiated integral of m(t) modifying the

waveform rather than the integral. 

Given this relationship it suffices to analyze one or the other and the one not

analyzed can be inferred from the other.  Therefore we will only analyze Frequency

Modulation (FM).

5.2.1 Modulation

In the last section we saw that the instantaneous frequency of a frequency modulated

wave is

so that the FM wave could be described by

To begin analysis of this modulation form let's start with a single-frequency

sinusoidal modulating signal of constant amplitude, i.e.,

the instantaneous frequency of the FM wave will then be
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fi ' fc % kfm(t) ' fc % kfAmcos(2Bfmt). (5-44)(5-44)

)f ' kfAm, (5-45)(5-45)

fi ' fc % )fcos(2Bfmt) (5-46)(5-46)

sFM(t) ' Accos 2Bfct % 2B)f m
t

0
cos(2Bfmt)dt

' Accos 2Bfct %
)f
fm

sin(2Bfmt) .
(5-47)(5-47)

sFM(t) ' Accos(2Bfct % $sin(2Bfmt)). (5-48)(5-48)

sFM(t) ' Accos[$sin(2Bfmt)]cos(2Bfct) & Acsin[$sin(2Bfmt)]sin(2Bfct), (5-49)(5-49)

s̃(t) ' sI(t) % jsQ(t). (5-50)(5-50)

It will necessary to know how much the instantaneous frequency varies or deviates

from the carrier frequency.  Inspecting Equation 5-44 it is seen that the maximum

deviation will occur when the cosine term is maximum.  Since the maximum

amplitude of the cosine term is unity, this maximum deviation will be equal to kfAm.

We therefore define this maximum frequency change as the frequency deviation )f,

for the single-frequency modulating signal.  The instantaneous frequency of the

(single frequency) modulated signal can now be written as

and the FM waveform as

Just as we defined a modulation index µ for AM, we now define a modulation index

for FM as )f/fm and we call it $.  Using this notation, the FM signal is defined as

We can find the in-phase and quadrature components (see Appendix xxx) sI(t) and

sQ(t) of this signal using the trig identity Equation Axxx

so that sI(t) = Ac cos($sin(2Bfmt)) and sQ(t) = Ac sin($sin(2Bfmt)).

Recalling the techniques of the complex envelope (Appendix xxx), we know

that
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s̃FM(t) ' Ac[cos($sin(2Bfmt)) % jsin($sin(2Bfmt))]

' Ace
j$sin(2Bfmt)

,
(5-51)(5-51)

s̃FM(t) ' j
4

n'&4
cne

j2Bnfmt
(5-52)(5-52)

cn '
1
T0

m
T0/2

&T0/2
s̃(t) e &j2Bnt/T0 dt

' fm m
1/2fm

&1/2fm

s̃(t)e &j2Bnfmtdt

' fmAc m
1/2fm

&1/2fm

e
j$sin(2Bfmt)&j2Bnfmt

dt.

(5-53)(5-53)

cn '
Ac

2B m
B

&B
e j($sinx&nx)dx ' AcJn($), (5-54)(5-54)

s̃FM(t) ' Ac j
4

n'&4
Jn($)e j2Bnfmt

(5-55)(5-55)

Substituting our values for the in-phase and quadrature terms, we get

from Euler’s identity.

It is clear that s~FM(t) is periodic so that we can define it in a Fourier series,

where

Let x = 2Bfmt, then dx = 2Bfmdt and the limits of integration will be –B to B so that

where Jn($) is the nth order Bessel function of the first kind with argument $ (see

Appendix xxx).  This result allows us to rewrite the Equation 5-52 as

and recalling the relationship between the complex envelope, the pre-envelope, and

s(t) from Appendix xxx, we know that sFM(t) can be found from the complex

envelope of Equation 5-55 by shifting in frequency and taking the real part, i.e.,
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sFM(t) ' Ac Re j
4

n'&4
Jn($)e j2B(fc%nfm)t

' Ac j
4

n'&4
Jn($)cos(2B(fc % nfm)t).

(5-56)(5-56)

sFM(t) . Ac cos(2Bfct) %
$Ac

2
cos[2B(fc % fm)t] &

$Ac

2
cos[2B(fc & fm)t], (5-57)(5-57)

Upon inspection, we can see that this version of the FM signal is composed of a series

of constants (Ac Jn($)) multiplied by cosine waves of frequencies, fc (n=0), fc ± fm

(n= ± 1), fc ± 2fm, etc., where the positive components make up the upper

sidebands and the negative the lower sidebands. Theoretically, the sum consists of

the infinite harmonics of fm.

It is not obvious from their appearance but Equations 5-48 and 5-56 represent

the same FM modulated signal.  An observant reader will probably ask why we

would go to the trouble to obtain 5-56 when 5-48 appears simpler and more

manageable.  The reason is that 5-48 offers no clue as to the frequency content of the

FM signal.  It is not intuitive that a single modulating frequency would result in an

infinite number of harmonics as indicated by Equation 5-56.

We can define the FM waves created in this fashion as either narrow-band or

wide-band.  This definition arises from a comparison with AM.  Recall that for tone

modulation of an AM carrier we had the carrier and an upper sideband at fc+fm and

a lower sideband at fc – fm.  If we define narrow-band FM to have this same

characteristic, we can see that the infinite summation above is reduced to having

Bessel function magnitudes non-zero only for n = 0 and n = ±1, i.e., Jn($) = 0, for

|n| > 1.  We find this is true for $ # 0.3, where J0($) . 1, and J1($) . $/2 (see

Appendix xxx).  Substituting these values into Equation 5-56 we find that the

narrow-band FM signal is

which is composed of the carrier and the two sidebands.  This looks very much like

the AM signal except that the lower sideband can be seen to be negative in this case.
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B . 2)f % 2W ' 2()f % W). (5-58)(5-58)

B . 2()f % 2W). (5-59)(5-59)

For wide-band FM, $ is not constrained and the sidebands consist of the

infinite frequency harmonics of fm.  The magnitude of the components is controlled

by the modulation index, $, and therefore Jn($).

How many of these sidebands are important for the transmission of the FM

signal?  Another way to state this is how much bandwidth do we require to

adequately transmit the signal?  We defined the frequency deviation )f as the

amount the modulated signal frequency varies from the carrier frequency.  However,

because of the infinite summation of the sidebands, the total frequency span will

exceed )f.  Analysis of the Bessel function shows that its magnitude rapidly

approaches zero for those sidebands above )f.  Therefore, the bandwidth of the

modulated signal always exceeds )f, but is limited.

In trying to define the bandwidth, J.R. Carson in the 1920s noticed that for

large $, the bandwidth is approximately equal to 2)f.  However, for small $ the

bandwidth is closer to 2fm, for a single tone, or 2W in general (where W is the

highest frequency contained in the modulating signal).  He proposed a bandwidth

definition still used today called Carson's rule which is

However, Carson's rule generally underestimates the bandwidth requirement of the

signal.  A better estimate is one called Carlson's rule which allows for more of the

spectral lines.  Carlson's rule is

5.2.2 Demodulation

Now that we have modulated the frequency of the carrier, how do we recover the

original message signal?  Since the message is modulated within the signal, just as

we did with AM, we must demodulate to recover the message, m(t).  However, the

methods of AM, i.e., envelope detection (without some pre-detection) and coherent

demodulation, will not work with FM.  FM demodulators are often called

discriminators and work on different principles than we have seen before.
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sFM(t) ' Ac cos 2Bfct % 2Bkf m
t

0
m(t)dt . (5-60)(5-60)

s )

FM(t) ' &Ac[2Bfc%2Bkf m(t)] sin 2Bfct % 2Bkf m
t

0
m(t)dt

' &2BfcAc 1 %
kf

fc

m(t) sin[...].
(5-61)(5-61)

s(t) LPF

Freq.

Modulator

r(t)

e(t)
v(t)

Figure 5-10.  Phase-locked loop.

There are two primary methods of demodulation:  direct and indirect.

Beginning with direct demodulation we will discuss a method called frequency

discrimination.  To understand its operation, recall the equation for a FM wave,

If we differentiate s(t) with respect to time we get

We can see that the envelope of s'(t) is A1[1 + A2 m(t)] which can be demodulated

with an envelope detector.  Therefore, to demodulate the FM signal we only need to

differentiate it and send it through an envelope detector.

One may notice that the effective carrier frequency of Equation 5-60 above is

not the same as fc but deviates around it.  As long as fc is much greater than fm the

detector will not follow these changes in frequency and no distortion will occur.

The most prevalent form of indirect demodulation is the phase-locked loop

(PLL).  The PLL finds many uses in communications and electronics, and an

understanding of its operation will be beneficial in later chapters.

Look first at the PLL shown in Figure 5-10  
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s(t) ' Ac cos 2Bfct % 2Bkf m
t

0
m(t)dt ' Ac cos(2c % 2m). (5-62)(5-62)

r(t) ' Av sin 2Bfct % 2Bkv m
t

0
v(t)dt ' Ac sin(2c % 2v). (5-63)(5-63)

e(t) ' &2kms(t)r(t). (5-64)(5-64)

cos(") sin($) '
1
2

sin(" % $) % sin(" & $) . (5-66)(5-66)

e(t) ' &2kmAcAvcos(2c%2m)sin(2c%2v)

' &2km

AcAv

2
[sin(2c%2v&2c&2m) % sin(2c%2v%2c%2m)],

(5-65)(5-65)

v(t) ' kmAcAvsin(2m&2v) ' kmAcAvsin2e, (5-67)(5-67)

The input signal is s(t), the FM modulated wave

The frequency modulator is a voltage controlled oscillator operating at the same

frequency as the carrier but with a 90 degree phase shift, or sin(2Bfct).  The feedback

signal r(t) is therefore a FM wave modulated by v(t)

The multiplier has a gain of –2km so that the error signal e(t) is

Multiplying this out we see that

where we have used the trig identity

Since the second sine term is at a frequency of 2fc, it will be removed by the low-pass

filter.  The remaining term will produce the output, v(t), of

where
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v(t) ' kmAcAv2e ' kmAcAv 2Bkf m
t

0
m(t)dt & 2Bkv m

t

0
v(t)dt . (5-69)(5-69)

v )(t) ' kmAcAv[2Bkfm(t) & 2Bkvv(t)]. (5-70)(5-70)

V(f)(j2Bf % kmAcAv2Bkv) ' kmAcAv[2BkfM(f)] (5-71)(5-71)

V(f) '
kmAcAvkfM(f)

jf % kmAcAvkv

. (5-72)(5-72)

v(t) '
kf

kv

m(t), kmAcAvkv » f. (5-73)(5-73)

2m ' 2B kf m
t

0
m(t) dt

2v ' 2B kf m
t

0
v(t) dt, and

2e ' 2m & 2v.

(5-68)(5-68)

After the PLL obtains lock, 2e will be small so that sin2e can be approximated by 2e.

We can now write the linear model of the PLL and

Differentiating both sides, we get

Transforming into the frequency domain we find that

so that

In order for v(t) to be a true representation of m(t), the above equation must be a

constant multiplied by the message signal.  Since we have a varying quantity f, the

only way for the equation to be a constant multiplied by M(f) is for kmAcAvkv to be

much larger than f, which is achieved through proper circuit design.  With this

constraint met, the output will be


